Wafer-scale, layer-controlled organic single crystals for high-speed circuit operation
نویسندگان
چکیده
Two-dimensional (2D) layered semiconductors are a novel class of functional materials that are an ideal platform for electronic applications, where the whole electronic states are directly modified by external stimuli adjacent to their electronic channels. Scale-up of the areal coverage while maintaining homogeneous single crystals has been the relevant challenge. We demonstrate that wafer-size single crystals composed of an organic semiconductor bimolecular layer with an excellent mobility of 10 cm2 V-1 s-1 can be successfully formed via a simple one-shot solution process. The well-controlled process to achieve organic single crystals composed of minimum molecular units realizes unprecedented low contact resistance and results in high-speed transistor operation of 20 MHz, which is twice as high as the common frequency used in near-field wireless communication. The capability of the solution process for scale-up coverage of high-mobility organic semiconductors opens up the way for novel 2D nanomaterials to realize products with large-scale integrated circuits on film-based devices.
منابع مشابه
High-mobility field-effect transistors from large-area solution-grown aligned C60 single crystals.
Field-effect transistors based on single crystals of organic semiconductors have the highest reported charge carrier mobility among organic materials, demonstrating great potential of organic semiconductors for electronic applications. However, single-crystal devices are difficult to fabricate. One of the biggest challenges is to prepare dense arrays of single crystals over large-area substrate...
متن کاملConfigurable Input-Output Power Pad for Wafer-Scale Microelectronic Systems
We describe, in this paper, a new digital inputoutput power configurable PAD (CPAD) for a wafer-scale-based rapid prototyping platform for electronic systems. This waferscale platform includes a reconfigurable wafer-scale circuit that can interconnect any digital components manually deposited on its active alignment-insensitive surface. The whole platform is powered using a massive grid of embe...
متن کاملA Current-Mode Single-Resistance-Controlled Oscillator Employing VDCC and All Grounded Passive Elements
Realization of a novel single-resistance-controlled oscillator, employing an active element and all grounded passive elements, is the purpose of this manuscript. With requirements for completing the design being only a single Voltage Differencing Current Conveyor and four grounded passive components, it is also a preferable choice for integrated circuit implementation. The designed circuit has ...
متن کاملOrganic printed photonics: From microring lasers to integrated circuits.
A photonic integrated circuit (PIC) is the optical analogy of an electronic loop in which photons are signal carriers with high transport speed and parallel processing capability. Besides the most frequently demonstrated silicon-based circuits, PICs require a variety of materials for light generation, processing, modulation, and detection. With their diversity and flexibility, organic molecular...
متن کاملDirect wafer bonding for MEMS and microelectronics
Direct wafer bonding is a method for fabricating advanced substrates for microelectromechanical systems (MEMS) and integrated circuits (IC). The most typical example of such an advanced substrate is the silicon-on-insulator (SOI) wafer. SOI wafers offer many advantages over conventional silicon wafers. In IC technology, the switching speed of circuits fabricated on SOI is increased by 20-50% co...
متن کامل